Math 5 – Some Problems to study for the final exam

- 1. Refer to the diagram to the right, where $AB \parallel DE$.
 - a. Prove that $\Delta CAB \sim \Delta CDE$
 - b. Prove that $\frac{a}{b} = \frac{d}{e}$.
 - c. Use this result to prove that the base angles of an isosceles trapezoid are congruent.
- 2. Consider the circle inscribed in a regular hexagon, as shown in the diagram to the right. Let CD = 8,
 - a. What is the measure of central angle $\angle COD$?
 - b. What is the area of the circle?
 - c. What is the area of the hexagon?
 - d. What is the difference between the area of the circle and the area of the hexagon.

- 3. Find all values of t so that the distance from the origin to the point with coordinates $(t 1, t^2 2)$ is the same as the distance from the origin to the point with coordinates (3, t).
- 4. Consider the function $f(x) = x^2$. Find and simplify an expression for the slope of the line connecting (x, f(x)) with $(x^2, f(x^2))$. Find the minimum value of this slope.
- 5. Compute and simplify the average rate of change of $f(x) = \frac{x}{x^2 + 1}$ over the given interval. Simplify.
 - a. [0, 2] b. [1, 1+*h*]
- 6. Consider the quadratic $f(x) = -x^2 + 2x + 2$
 - a. Express the quadratic function in vertex form.
 - b. Express the zeros (x-intercepts) of the parabola in simplest radical form.
- 7. Sketch its graph, showing the coordinates of the vertex and all intercepts.
- 8. The graph of a function g is given below. Use it to tabulate 5 key points and graph the following:

- 9. A child rides on a merry-go-round horse which is at a distance of 15 ft from the center of the merrygo-round. After 8 minutes the child had traveled 13.4 revolutions.
 - a. What is the radian measure of the angle the child has swept out during the 8 minutes?
 - b. What linear distance has the child traveled?
 - c. What was the average angular speed of the child during the 8 minutes?

- 10. Suppose $\tan \theta = 24/7$ and θ is in the third quadrant. Find the following: a. $\sin \theta$ b. $\cos(\theta + \frac{\pi}{2})$ c.cos $(\theta + \frac{3\pi}{2})$
- 11. The Millennium Wheel rotates once every 15 minutes. Its highest point is about 142 meters above the ground and the lowest point is about 2 meters above the ground. Write a function that gives the height of a rider *t* minutes after boarding the Millennium Wheel.
- 12. The total surface area of a cylinder is π square units.
 - a. Find a function that models the cylinder's height as a function of its radius.
 - b. Find a function that models the cylinder's radius as a function of its height.
- 13. Find a formula for the inverse function of $f(x) = \sqrt[3]{x+8}$ and plot the function and its inverse together in the same coordinate plane, showing the symmetry of these function across the line y = x.
- 14. In the figure at right, suppose the circle centered at *B* has radius 4.
 - a. What is the length of *AD*?
 - b. What is the length of *AC*?
 - c. What is a measure of angle $\angle ACD$?
 - d. What is the length of *CD*?

15. Suppose that a triangle has sides of length 4 and 6 which include the angle $\theta = 1$. Solve the triangle.

- 16. Suppose that a triangle has sides with lengths 3, 8 and 10. Find the interior angles.
- 17. Suppose $\cos \theta = -\frac{3}{7}$ in quadrant III. Find $\csc \theta$, in simplest radical form.
- 18. Suppose a point in the fourth quadrant of the unit circle has x coordinate $\frac{1}{r}$.
 - a. Draw the unit circle in the Cartesian plane showing the position of this point.
 - b. Find the radian measure of the smallest positive polar angle θ that terminates at this point.
 - c. What are the coordinates of the terminal point for $\theta \pi$?
 - d. What are the coordinates of the terminal point for $\theta \frac{\pi}{2}$?

19. Consider $f(x) = 15 + 30\sin\left(\frac{\pi}{12}x + \frac{\pi}{8}\right)$

- a. Find the amplitude, period, phase shift and equilibrium line for *f*.
- b. Sketch a graph for $f(x) = 15 + 30 \sin\left(\frac{\pi}{12}x + \frac{\pi}{8}\right)$ labeling the coordinates of points at the max, min and equilibrium points.

c. Find all values of x such that
$$15 + 30\sin\left(\frac{\pi}{12}x + \frac{\pi}{8}\right) = 0$$
. Write the values in exact form.

20. Find a formula for the sinusoidal function whose graph is shown:

- 21. A Ferris wheel of radius 18 meters is positioned so that its center is 31 meters above the ground. Write a sinusoidal function which gives the height of a point which starts at the bottom of the Ferris wheel, assuming that the wheel turns 2 revolutions every 3 minutes.
- 22. Given $\sin \theta = \frac{7}{25}$, and θ is in the second quadrant, simplify expressions for $\cos \theta$ and $\tan \theta$. Do not approximate these, but give approximate 4-digit approximation for both the radian and degree measure of θ .
- 23. Given $\cos(t) = \frac{1}{4}$, and t is in the fourth quadrant, simplify expressions for

a.
$$\cos(t + \pi)$$
 b. $\cos(t + \frac{\pi}{2})$ c. $\tan(t + \frac{\pi}{2})$

- 24. Solve the triangle given
 - a. Three sides with lengths 34, 56 and 89.
 - b. Angle $\angle A = 30^{\circ}$ opposite a = 17 and adjacent to c = 8.

25. Consider the function
$$f(x) = 1 - \sqrt{2} \sin\left(2x - \frac{\pi}{3}\right)$$

- a. Find the amplitude, period and phase shift for and sketch a graph showing at least one wave form. Be careful scale and label axes in your graphs.
- b. Find all x-intercepts of $f(x) = 1 \sqrt{2} \sin\left(2x \frac{\pi}{3}\right)$. Write the values in exact form.
- 26. A disk centered at the origin with radius 4000 miles is rotating at a rate of 1 revolution every 24 hours. Consider a point *P* which starts on the *x*-axis with coordinates (4000, 0). We're interested in the distance from *P* to the nearest point on the vertical line x = 24000 miles.
 - a. Sketch a LARGE graph for this situation. Scale and label significant points and lengths.
 - b. Compute the angular velocity of the disk, in radians per hour.
 - c. Write a sinusoidal function which gives this distance (from *P* to the vertical line) as a function of *t*, measured in hours.

27. The circle shown at right has the equation
$$\left(x - \frac{7}{2}\right)^2 + \left(y - \frac{9}{2}\right)^2 = 25$$
.

- a. Find the distance between the *y*-intercepts.
- b. Show that the central angle θ of the sector is given by

$$\theta = 2 \arcsin\left(\frac{\sqrt{51}}{10}\right).$$

c. Approximate the shaded area to the nearest thousandth.

- 28. The diagram shows circular quadrilateral *ABCD* with diagonals AB and CD.
 - a. Show that if we construct M as shown so that $\angle ADM \cong \angle CDB$ then $AD \cdot CB = AM \cdot CD$
 - b. Show that $AC \cdot BD = BM \cdot CD$
 - c. Conclude that $CD \cdot AB = AC \cdot BD + AD \cdot CB$

- 29. Find the area of triangle with sides of lengths *a*, *b*, and *c* opposite angles A, B, and C.
 - a. In terms of *a* and *b* and the included angle.
 - b. In terms of *a* and *c* and the included angle.
 - c. In terms of *b* and *c* and the included angle.
 - d. Use the fact that all these measures of the area are equal to prove the law of sines.
- 30. Find an equation for the hyperbola with asymptotes $y 2 = \pm 2(x 3)$ and foci $(3 \pm \sqrt{5}, 2)$.
- 31. Find an equation for the ellipse centered at (3,4) with eccentricity $\frac{1}{2}$ and passing through (0,0).
- 32. Parameterize the given conic section using trigonometric functions. Sketch a graph showing the key features of the conic.

a.
$$x^2 = 4 - 2y^2$$
 b. $\frac{(x-1)^2}{3} = 2(y-4)^2 = 1$ c. $5x^2 - 4x - 3y^2 + 2y + 1 = 0$

- 33. Suppose angle $C = 10^{\circ}$ in a triangle ABC is formed by adjacent sides of length a = 3 and b = 5. What is the length of the opposite side, *c*?
- 34. Express $\sec\left(\arctan\frac{1}{2}\right)$ in simplest radical form.

- 36. Rewrite the expression as an algebraic expression in x: sin(arctan x).
- 37. Given that $f(x) = \arctan x$, sketch a graph for $y = 1 + 2f(\pi(x+2))$ and find asymptotes and intercepts.